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Abstract

Recent events such as Stuxnet and the Shamoon Aramco incident have brought to

light how vulnerable industrial control systems (ICS) are to cyber attacks. ICS and

critical infrastructure is ingrained in modern society, including the electric power grid,

water treatment facilities, and nuclear energy plants. Malicious attempts to disrupt,

destroy and disable such systems can have devastating effects on the way of life in

a modern society, including loss of life. The need to implement security controls in

the ICS environment is more vital than ever. ICSs were not originally designed with

network security in mind. Today, intrusion detection systems (IDSs) are employed to

detect attacks that penetrate the ICS network. This research proposes the use of a

novel algorithm known as the ScriptGenE framework as an anomaly-based intrusion

detection system or anomaly detection system (ADS). The ADS is implemented be-

tween an engineering workstation (EWS) and programmable logic controller (PLC)

to monitor traffic and alert the operator of anomalous behavior. Two experiments

are performed including an Experimental Validation in which a ‘Baseline’ model of

normal network behavior is established. The experiments are designed to test the

effectiveness of the ADS when introduced to three types of network traces: Normal,

Malicious, and Combined. The Normal and Malicious network traces are compared

with the ‘Baseline’ model to determine if the ADS will correctly classify normal

network behavior with anomalous network behavior in Experiment 1. The Combined

network trace is used to determine if the ADS is still able to detect anomalies when the

training data also contains anomalous behavior in Experiment 2. The ADS achieves

true positive rate (TPR) of 0.9011 and false positive rate (FPR) of 0.054 for Experi-

ment 2. In Experiment 1, the ADS achieves a FPR of 0 and true negative rate (TNR)

iv



of 1 and shows that it is a perfect classifier when trained with network traffic that

is free of anomalies. Based on Experiment 1 findings, this research demonstrates the

viability of using the ScriptGenE framework.
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A FEASIBILITY STUDY ON THE APPLICATION OF THE SCRIPTGENE

FRAMEWORK AS AN ANOMALY DETECTION SYSTEM

IN INDUSTRIAL CONTROL SYSTEMS

I. Introduction

1.1 Background

Researchers, asset owners, federal agencies, and hackers all have a vested interest

in developing methods to secure supervisory control and data acquisition (SCADA)

systems as these systems infiltrate every aspect of modern society. Today, because of

increased connectivity to the Internet, cyber attacks can reach into homes and vehi-

cles and cause destructive, if not fatal, effects [Sch14]. Even more alarming are the

effects that attackers can inflict on larger populations by targeting ICSs which include

SCADA systems. It is cited that cyber attacks that destroy or manipulate equipment

are far more prevalent than widely believed [Men15]. In 2014, 245 incidents were re-

ported to the ICS-Computer Emergency Response Team (CERT) [DHS14]. Fourteen

of the sixteen critical infrastructure sectors reported their incidents to ICS-CERT,

including the nuclear, healthcare, critical manufacturing and energy sectors. Of the

reported incidents, 59% were reported from the critical manufacturing and energy

sectors [DHS14]. Famous examples, such as Stuxnet, remain in the forefront of secu-

rity professionals’ and asset owners’ minds as they are motivated to provide novel and

reliable protection mechanisms that address the challenges of the ICS environment.

1



1.2 Motivation

Today, in ICS/SCADA “communication is carried through a variety of media:

Ethernet, wireless, shared lease lines, and even the Internet” [RGH07]. Denial of

service (DoS) attacks exploit the availability and lack of security often found within

an ICS environment. An example of the impact an attack could have is “inten-

tional removal of a system’s electrical power as a physical DoS attack” [CKBR06].

According to the National Institute of Standards and Technology (NIST) guide’s rec-

ommendations, network-based intrusion detection system (IDS), are most effective

when deployed on networks and “computers that use general-purpose operating sys-

tems (OSs) or applications such as human machine interfaces, SCADA servers, and

engineering workstations” [SFS11]. The guide also adds that IDSs “can greatly en-

hance the security management team’s ability to detect attacks entering or leaving

the system, thereby improving security” [SFS11]. However, operators and engineers

must be able to recognize attacks in addition to organized patterns. The need for an

anomaly-based IDS, which distinguishes anomalous network behavior from normal

network behavior in an ICS environment is vital.

1.3 Problem Statement

The goal of this research is to assess the viability of a novel framework, known as

ScriptGenE, as an anomaly-based IDS. ScriptGenE was originally created to provide

automatic configuration of PLC emulators [War15]. Because of the intrinsic clustering

algorithms in the ScriptGenE framework, its protocol tree building capabilities, and

previous research results, the framework presented an opportunity to be implemented

as an IDS that can detect anomalies on an ICS network. It is hypothesized that

the ScriptGenE framework can be implemented as an anomaly-based IDS in an ICS

environment.

2



1.4 Approach

This research studies the implementation of an automatic PLC emulator as an

anomaly-based IDS or ADS. The ADS is implemented between a PLC and an EWS

that are connected via Ethernet to a spanning port switch. Two network traces

are created for experimentation using a real PLC: one with simulated malicious

network traffic and one with attack-free network traffic. A third trace is produced

by merging the malicious network traffic with the attack-free network traffic. The

network traces are used in three experiments which are conducted for this research

and are labeled Experimental Validation, Experiment 1, and Experiment 2. The 10-

fold cross-validation method is used in the Experimental Validation and Experiment 2

to ensure an accurate estimate of the performance of the ScriptGenE framework as an

ADS. The result of the Experimental Validation is a ‘Baseline’ protocol tree (p-tree)

and is used to represent normal network behavior between an EWS and PLC. The

10-fold cross validation technique follows machine learning evaluation methods as the

ScriptGenE framework closely resembles other machine learning-based ADSs in its

ability to build a baseline model of normal behavior for comparison against incoming

traffic for anomalous, potentially malicious, activity [Dom12, ZZLJ08, MJ14, YJ13,

CMA03, YUH06].

In Experiment 1, network traces are input into the ScriptGenE framework, and p-

trees are created using clustering algorithms. The ScriptGenE replay script contains

a unique backtracking algorithm that allows for session looping and is used to serve

the ‘Baseline’ p-tree. The two network traces that are generated are then used to cre-

ate p-trees to be compared with the ‘Baseline’ p-tree, which models normal network

behavior. Output logs from the replay script capture anomalies between the p-trees.

Additionally, mutation rates are measured between the ‘Baseline’ p-tree and exper-

imental network traces mentioned earlier to determine quantitatively if differences

3



between the p-trees do exist. Experiment 2 addresses a scenario in which an attacker

remotely inserts malicious traffic and attempts to train the ADS with the intent to

carry out an attack later. The third network trace containing merged malicious and

attack-free network traffic is used for this experiment.

A TPR of 0.9 and FPR of 0.1 are selected as goals for this research and are used

to demonstrate effectiveness of the ScriptGenE framework as an ADS.

1.5 Assumptions and Limitations

1.5.1 Scope.

Experiments are conducted in an isolated laboratory environment. Real ICS en-

vironments are large, complex, and application-specific. This research uses a lab

environment which is reduced to one PLC and two dedicated workstations, repre-

senting an EWS and the ADS device. The ScriptGenE framework is tested within

this small, isolated environment to evaluate performance and the feasibility of the

framework as an ADS.

1.5.2 Limitations with ICS network traffic data samples.

Locating real ICS network traffic samples is difficult due to the security impli-

cations of analyzing real network traffic. It is in the best interest of asset owners

not to release real samples even for research purposes. Therefore, network traffic

is generated between the PLC and the EWS for analysis and testing. Additionally,

simulating real network traffic between an EWS and PLC also narrows and simplifies

the data collected.

4



1.5.3 ScriptGenE Limitations.

In addition to the documented assumptions and limitations of the current ver-

sion of the ScriptGenE framework, the ScriptGenE framework is not written to han-

dle more than one transmission control protocol (TCP) session. [LDM06] identifies

dependencies that can be interleaved among more than one TCP session as inter-

protocol dependencies as is the case with the file transfer protocol (FTP) protocol,

for instance. The FTP recv command is seen on the control connection to cause

traffic to be sent on the data connection [LDM06]. The lack of inter-protocol depen-

dency handling at this moment limits the network traffic to be generated between one

field device and one workstation for the ScriptGenE framework to perform [War15].

This research focuses specifically on EtherNet Industrial Protocol (EtherNet/IP) and

intrusion detection between an EWS and PLC.

1.6 Thesis Overview

The rest of this document is organized in the following way. Chapter II provides

background and related research on intrusion detection and anomaly detection in the

ICS environment. Chapter III presents the methodology of this research. Chapter IV

covers results and analysis. Finally, Chapter V presents the research conclusions and

future work.

5



II. Background and Related Research

2.1 Overview

This chapter presents an overview of background information on ICS and SCADA

systems and related research in IDSs implemented in ICS and SCADA networks.

Section 2.2.1 provides an overview of ICSs and SCADA systems. Section 2.2.2 reviews

operations and control components. Section 2.2.3 reviews threats to SCADA systems

and provides background on previous attacks as well as current vulnerabilities and risk

factors. Section 2.2.4 examines IDSs as security instruments, providing a brief analysis

of the different types of IDSs. Section 2.3 describes related research in the area of

anomaly detection systems as applied to ICS environments. Finally, Section 2.3.2 is

provided for an understanding of the ScriptGenE framework internals.

2.2 Background

2.2.1 Industrial Control Systems Overview.

Industrial control systems is a term that comprises different types of control sys-

tems, such as SCADA systems and distributed control systems (DCS) as well as

control system configurations, such as PLCs. These control systems are often im-

plemented in industrial sectors and critical infrastructures such as electrical, water,

oil, natural gas, manufacturing, and pharmaceutical industries, to name a few. The

differences between SCADA and DCS systems are often blurred in their implementa-

tions. By conventional definition, SCADA systems control geographically-separated

assets with a centralized control center that manages data acquisition [SFS11]. On

the other hand, DCS are usually confined to a local area and are not as geographically

dispersed as SCADA systems. Whereas communications between field devices in a

DCS can occur over a local area network, SCADA systems are designed to handle
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long-distance communications [SFS11]. Throughout the remainder of this document,

SCADA systems and DCSs are referred to collectively as ICSs. ICSs are critical to

the operation of critical infrastructure in the US as they provide the framework of

daily life for nearly 319 million citizens [Cen].

Figure 1 depicts a general layout of an ICS, which consists of three levels [SFS11]:

• Management level which consists of the control center

• Communications transport level which consists of the wide area network (WAN)

• Field level which consists of field devices such as PLCs

Figure 1. ICS System General Layout [SFS11]

The control center contains the ICS server or master terminal unit (MTU), human

machine interface (HMI), EWS, data historian and communications routers. All of

these devices are connected by a local area network (LAN) and are used to collect and

log information taken from the field sites to be presented to a human operator [Dun13].

System operators are also vital to this level in a ICS as they use the EWS or HMI

to remotely control and ensure proper operation of field devices. In addition, the

control center handles centralized alarming, trend analyses, and system reporting.
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The operator is able to make decisions for the entire process based on the collected

and analyzed data [SFS11].

The communication transport level consists of a WAN that connects field devices

to the control center. There are various techniques by which data is transported

from the field device to the control center HMI or EWS—cable, fiber, radio frequency

and/or satellite [SFS11].

Field devices include PLCs and remote terminal units (RTUs) which control local

processes and monitoring of sensors. PLCs and RTUs are embedded devices config-

ured by operators to handle specific functions such as arithmetic, data processing,

I/O control, and timing. Programming a PLC is accomplished via a user interface

located on the EWS, and data is stored in the data historian; these components are

also accessible via a LAN [SFS11].

2.2.2 ICS Control Components and Operations.

This research focuses primarily on two control components: the PLC and the

EWS. As previously mentioned, PLCs control complex processes at the field level

of an ICS. They are configurable, economical, versatile, and typically provide an

interface between the cyber-physical components (e.g., sensors) and the information

technology (IT) components (e.g., the HMI) [Dun13, SFS11]. The EWS and HMI

consist of both software and hardware that allows a human operator to monitor or

change processes and control settings [SFS11]. Figure 2 depicts a block diagram of the

process that takes place in a SCADA system with all the control components. The

EWS and/or HMI give the operator or engineer control over the state of operations

and allows the operator to manually override any control process in the event of an

emergency. Additionally, the EWS and/or HMI provide the engineer or operator with

information on process data which can also be sent to administrators, managers or
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business partners for further analysis and action [SFS11]. These two components are

critical in ICS operations.

Figure 2. ICS Process Block Diagram [SFS11]

2.2.3 Threats to ICS.

2.2.3.1 Previous ICS Attacks.

In an address to the Brookings Institute, the Chairman of the Joint Chiefs of Staff,

GEN Martin Dempsey stated that the first targets in a cyber attack will be civilian

infrastructure and businesses. Moreover, GEN Dempsey also added that detected

intrusions to US critical infrastructure have increased 17 fold since he assumed the

chairman position in 2011 [Dem13]. According to an annual US ICS-CERT report,

245 incidents were reported in 2014; 32% of those incidents were from the energy

sector, while 27% originated from the critical manufacturing sector [DHS14].

Stuxnet is perhaps the most well-known and widely referenced attack on ICS. Ac-

cording to the W32.Stuxnet dossier published by Symantec, Stuxnet was deployed to
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covertly sabotage PLCs by reprogramming them to operate outside of the intended

boundaries of the device as used within a nuclear centrifuge system [FMC11]. Stuxnet

consisted of a wide variety of attack components to maximize the chance of success

for the attacking party. Specifically, Stuxnet contained the first ever PLC rootkit,

command and control interface, four zero-day exploits, a Windows rootkit, antivirus

evasion techniques, complex process injection and hooking code, network infection

routines, and peer-to-peer updates [FMC11]. In September 2010, it was reported

that over 100,000 hosts had been infected by Stuxnet around the world. The prolifer-

ation of the Stuxnet virus and the success with which it was able to manipulate the

EWS, PLCs, and human operators illustrate the vulnerabilities that exist in three

components of an ICS.

The Shamoon-Aramco incident provides another example of a destructive attack

on ICSs. In August 2012 the Saudi Arabian Oil Company, also known as Saudi

Aramco, suffered huge data loss that resulted in the disruption of daily operations

for nearly two weeks [BTR13]. As it came to be known later, the Shamoon virus

was reported to have infected over 30,000 Windows-based computers on the Saudi

Aramco company network. The main function of the software was to haphazardly

delete data from the company computer hard drives [BTR13]. Although no physi-

cal damage occurred, analysis of the attack illuminates the target selection criteria

from the attacking party point of view. At the time, Saudi Aramco held 10% of the

global supply and was the largest oil producer in the world [BTR13]. Their holdings

in the oil market could have been a possible motive of the attacker. In addition,

Saudi Aramco sales topped over $200 billion annually, and the attack affected the

business processes of the company as well as other oil and gas firms such as Exxon-

Mobil [BTR13]. Former Defense Secretary Leon Panetta stated the Shamoon virus

is “very sophisticated” and that the US is existing in a “pre-9/11 moment” in which

10



the US remains unprepared as attackers continue to plot and carry out cyber attacks

such as the Shamoon incident [Dem13, BTR13].

2.2.3.2 Vulnerabilities in ICS.

The attacks mentioned in the previous section highlight well known vulnerabilities

that exist in ICS. The increasing interconnectedness of ICS devices to the Internet

allows attackers to exploit network vulnerabilities typically found in a traditional IT

environment. Unlike the traditional IT community, ICS operators place safety and

availability above confidentiality and integrity [SFS11]. Because business and opera-

tions decisions are centered around safety and availability, attackers can craft mali-

cious software that exploits network vulnerabilities that would normally be patched

in a traditional IT environment. The National Institute of Standards and Technology

(NIST) cites several network vulnerabilities ranging from configuration vulnerabilities

to network hardware, perimeter, communication and wireless connections [SFS11].

Poorly configured security equipment, for instance the practice of using default con-

figurations, allows attackers to exploit open ports or network services. In the case

of password management, NIST cites that passwords were permitted to be transmit-

ted in plain text leaving them susceptible to interception via a man-in-the-middle

attack [SFS11].

In addition to network device configuration vulnerabilities, NIST documented that

no routine security monitoring occurred on ICS networks. This vulnerability leaves an

ICS network susceptible to intrusions that could go unnoticed and cause damage to

equipment or disruption to services and operations, similar to the Shamoon-Aramco

incident [SFS11, BTR13]. No security monitoring also increases vulnerabilities in

communication paths accessible externally to an ICS network. Unknown and un-

verified connections into an ICS network could leave backdoors open for attacks.
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Furthermore, once inside the network, attackers could manipulate industrial control

protocols without raising suspicion as there is a lack of integrity checking in commu-

nications protocols [SFS11].

2.2.3.3 Risk Factors.

The ICS environment presents several challenges in addressing the previously men-

tioned vulnerabilities that would not normally be an issue in a traditional IT envi-

ronment. In traditional IT, when information about a vulnerability is released, a

software patch is developed and administrators immediately apply those patches to

remove the vulnerability from the system and enterprise. An ICS environment, on

the other hand, prioritizes system availability and saftey over data integrity. Patching

ICS equipment requires taking a control system offline, which requires weeks of plan-

ning and the possibility of not providing redundant services in the event the system

could not be brought back online in the allotted time [SFS11, Dun13].

First generation, monolithic ICS and SCADA systems were isolated and main-

tained on a separate network [Sha06]. Control systems are less isolated and sepa-

rated from the corporate IT enterprise network. Figure 3 depicts a two-layer topol-

ogy in which the control/field network is connected to the corporate network via a

router [SFS11]. Today, corporate networks are connected to the Internet making com-

munication and management of day-to-day business more convenient and accessible.

As a result, control systems may be exposed to the Internet via their connection to

the corporate networks. This change is due in part to paradigm shifts in operational

and information management practices. More recently, decision makers in organiza-

tions require access to data to make more informed decisions on the manufacturing

and distribution processes [SFS11].
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Figure 3. Two Layer Network Topology

Although increased connectivity makes it convenient for asset owners, decision

makers, engineers and operators, it has increased the risk of exposing field devices and

other critical system components to the Internet and malicious attacks. Field devices

have been recorded and can be found on the well-known search engine, SHODAN.

SHODAN is an acronym for Sentient Hyper-Optimized Data Access Network and

is the first search engine for Internet-connected devices. Project SHINE, which is

an acronym for SHODAN Intelligence Extraction, was launch between April 2012

and January 2014. The intent of the project was to find ICS field devices that were

connected to the Internet. The 2014 Project SHINE report revealed that 2384 field

devices in the US using port 44818 (EtherNet/IP) are accessible via the Internet

[RB15]. This accessibility presents a real problem as ICS field devices connected to

the Internet are vulnerable to attack.

Shortly after the Project SHINE report was published, another project known

as Project RUGGEDTRAX was conducted to provide substantiation that Internet-

facing ICS devices are indeed vulnerable to attack. ICS equipment was purchased

on eBay, configured with minimal security controls and connected directly to the

Internet. Within two hours of being connected to the Internet an attack was de-
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tected. Within two days, the ICS device appeared on the SHODAN search engine.

The project was conducted over the period of three months. At the conclusion

of the project, over 140,000 attacks were detected and recorded from 651 IP ad-

dresses [RB15].

In addition to the patching issue, the age of ICS equipment presents another

challenge for securing ICS networks. Whereas traditional IT equipment is replaced

every three to five years, ICS equipment can remain in operation for up to thirty

years [SFS11]. Furthermore, newer equipment needed to replace legacy systems may

not be available or even manufactured, and engineers are instructed by vendors to

ensure that systems contain the current firmware updates instead of equipment re-

placement. According to NIST, the mixture of newer hardware and software with

legacy systems can make it difficult and/or infeasible to apply their recommended

security controls [SFS11].
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2.2.4 Intrusion Detection Systems Overview.

To address the vulnerabilities and risk factors listed in previous sections, NIST

recommends a defense-in-depth architecture strategy that includes implementing fire-

walls, demilitarized zones, training programs for personnel, incident response mecha-

nisms and IDS [SFS11]. NIST defines an IDS as the process of monitoring events in

a computer system or network and the analysis of such events looking for intrusion

traces [GUZ11, SFS11]. An IDS can also be defined as a system that can detect

malicious or inappropriate actions of a system within a computer or within a whole

network [DOS06]. The intrusion detection process can be divided into three compo-

nents [GUZ11, JY13]:

• Information sources

• Data analysis strategy

• Threat assessment and response

Information can originate from several sources; [GUZ11] classifies three: informa-

tion obtained from a host, obtained from monitoring a network, and data obtained

from the execution of applications. From this classification of information origina-

tion, IDSs can be separated into two main groups: host-based intrusion detection

systems (HIDS) and network intrusion detection systems (NIDS). HIDS monitor and

analyze information relating only to the host, such as application logs. NIDS analyze

activities on a network and are more commonly used in ICS networks [GUZ11]. A

network event is a collection of traffic data, such as internet protocol (IP) or TCP

packets [JY13]. Since NIDS are more frequently used in ICS environments, consid-

eration of the data analysis strategy further classifies IDSs into two main categories:

misuse- or signature-based intrusion detection and anomaly-based intrusion detec-

tion [GUZ11]. Threat assessment and response involves the human operator as part
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of the process. According to [Zan04], the IDS process loop closes on a human, which

is an essential part of the system. When an alert is generated in the HMI or EWS,

it is up to the human operator to decide on the best course of action for the control

system.

2.2.4.1 Signature-based IDS.

A signature-based, also known as misuse detection, IDS monitors and analyzes

activities on a network and compares those events with signatures of attacks stored

in a database [GUZ11]. Signature detection methods are widely used because they

have high accuracy rates. If an event matches a signature, an alert is generated.

However, as new attacks are discovered every day, rule sets must be manually updated.

Therefore, the signature-based IDS is only as effective as the current rule sets which

include the most current attack signatures [JY13].

2.2.4.2 Anomaly-based IDS.

Anomaly detection systems depend on the activity on the network to build a

model of normal behavior with which to compare anomalous behavior [GUZ11]. Fur-

thermore, anomaly detection is used in control components of critical infrastructure

to detect tampering of communications among those components [Hgv06]. Anomaly

detection systems look for deviations from normal behavior and can include detec-

tion of novel attacks [CMA03, Hgv06]. This characteristic is an advantage of ADSs

in ICS environments. Anomaly detection systems have the capability of classifying

deviations from learned normal behavior as intrusions in a system [GUZ11].

One of the drawbacks in this system is the inability to discern intent, meaning the

system is unable to determine whether a deviation from normal behavior is malicious

or not. The system is designed to trigger an alert simply due to a deviation [CMA03].
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This problem presents itself in a high FPR [GUZ11]. An asset owner defines the

acceptable threshold for false positives. An ADS with a high FPR could potentially

serve no purpose in an ICS network [CMA03, GUZ11]. Another cited problem is a

lack of clarity in the detection process. The lack of clarity works to the advantage

of the attacker as he could work slowly within the network to develop a new model

of acceptable behavior so that the IDS does not register his malicious activity as a

deviation [GUZ11].

2.2.4.3 Shadow Honeypot.

The Quickdraw SCADA IDS is one of many ongoing projects at Digital Bond to

encourage the protection of critical systems [?]. Within this project are nearly 150

attack signatures written for common ICS protocols, such as ModBus TCP, Ether-

Net/IP, and DNP3, to be implemented in a misuse- or signature-based IDS. Although

these signatures are being shared throughout the ICS community, signature-based

IDSs require routine updating to ensure the IDS is able to detect current attacks. An

ADS is useful in separating anomalous behavior from normal behavior, however it

does not discriminate malicious, anomalous behavior from benign, anomalous behav-

ior. [SS12] and [ASA+05] proposed a novel concept known as a shadow honeypot.

The shadow honeypot combines features of an ADS with the honeypot. Anomaly

detectors monitor all traffic to a protected network [ASA+05]. Once the ADS detects

anomalous behavior, traffic is routed to a honeypot where it is investigated and re-

played for the attacker. It is recommended a IDS or honeypot be paired with any

ADS to form a hybrid IDS, however, this is beyond the scope of this research.
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2.3 Related Research

There is much research in the area of anomaly detection in ICS networks. [VCD+07]

claims that anomaly detection is better for ICS environments than signature-based

intrusion detection. ICS networks are more predictable than traditional corporate

enterprise networks as they must operate in a predictable manner continuously per-

forming the same operations [GUZ11]. The predictable nature of ICS networks makes

anomaly detection a better fit as an IDS; normal operations do not and cannot vary

daily therefore the learned behavior will follow a fairly strict pattern and deviations

from that pattern can be logged for an operator to analyze.

2.3.1 Machine Learning Methods Applied to Intrusion Detection.

2.3.1.1 Learning Rules for Anomaly Detection (LERAD).

Machine learning techniques have been applied to anomaly detection in ICS net-

works. In their work, [CMA03] developed and examined two methods that build

models of ICS network traffic from past behavior. LERAD is an algorithm that

characterizes normal behavior on the network then builds a model to compare using

probability to estimate the likelihood of an instance under consideration is anomalous.

learning rules for anomaly detection (LERAD) is designed to be an efficient algorithm

that uses a minimal set of rules to concisely characterize training data. Afterward,

the probability that an instance occurs outside of this rule set is estimated. Finally,

an anomaly score based on an instance, x, is calculated by finding the p-value of a

rule in the rule set. A small p-value indicates a low likelihood of the instance, x,

being anomalous.

The researchers used the 1999 Defense Advanced Research Projects Agency (DARPA)

intrusion detection dataset and assumed the training data was free of attacks, thereby

enabling the algorithm to develop a model based on normal behavior. Based on their
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experiments, resultant rule sets consisted of 50 to 75 rules, and the algorithm detected

117 attacks out of 201 with at most 10 false positives [CMA03]. They concluded that

LERAD was successful in finding highly predictive normal patterns and was able to

detect 58% of attacks not detected by the original participants who attempted to

identify intrusion in the DARPA dataset [CMA03].

Machine learning when applied to anomaly detection shows potential in providing

a layer of security in an ICS environment. The main drawback to machine learning

as a method of anomaly detection is a high rate of false positives due to the diffi-

culty in obtaining attack-free data [PS10]. Although this presents a challenge many

researchers must overcome, it does not take away from the overall advantage anomaly

detection has over signature detection: the potential ability of the system to detect

novel attacks as they are occurring on the network [GUZ11, MJ14, YJ13, YUH06,

ZS10].

2.3.1.2 Clustering Algorithms.

In addition to LERAD, [CMA03] developed another algorithm based on cluster-

ing and aptly named the algorithm, clustering for anomaly detection (CLAD). The

clustering approach allowed for the identification of “outliers” or data points outside

of clusters of selected network features, to be classified as anomalous. Though the

algorithm is related to k-NN (Nearest Neighbor), the key differences in this algorithm

are that clusters are allowed to overlap and clusters have a fixed width [CMA03].

CLAD operates in two phases. The first phase creates clusters of fixed width,

W, while the second phase assigns data points to the created clusters. During this

phase, if a data point is farther away than the fixed width, W, from a cluster, then

the data point becomes the center of a new cluster. If the data point is not farther

away than W, then the data point is clustered with the existing cluster. Determining

19



whether a cluster is an outlier requires analysis using two properties of a cluster:

the density of the cluster and the distance from other clusters [CMA03]. Density

is calculated by counting the number of data points within a cluster. Inter-cluster

distance is calculated by the Euclidean distance function. After these calculations are

performed, a determination is made as to whether the cluster is distant or “sparse.”

A “distant” cluster, considered to be a global outlier, is more than one standard

deviation away from the average of inter-cluster distances. A cluster is considered

“sparse,” a local outlier, if it is more than one median absolute deviation smaller than

the median number of data points in the cluster, labeled as “Count.” Alerts signifying

anomalies are generated for clusters that are sparse or dense and distant [CMA03].

The algorithm was implemented by learning a model for each TCP port and

10 application protocols, including FTP, Hypertext Transfer Protocol (HTTP) and

POP3 to name a few. The researchers found that density was not as reliable as inter-

cluster distance in determining an anomaly score. Their model learned 11 application

protocols from the DARPA dataset and detected 76 attacks. Although the baseline

of attacks detected from this dataset is 85, it must be noted that 85 detected attacks

were achieved by a signature-based detection system. The anomaly detector, CLAD,

on the other hand, detected 76 attacks [CMA03]. Although it detected nine less

attacks than the signature-based IDS, CLAD detected the attacks with no a priori

knowledge of the attacks, which is another appealing feature of anomaly detection

systems.

2.3.1.3 Pattern Matching.

Pattern matching is another method used in anomaly detection. [YUH06] exam-

ined network traffic by creating profiles using specific feature vectors, then classifying

the vectors based on temporal variables (e.g., time of day, day of week). The IDS
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predicts correct behavior using predefined features that are meant to represent nor-

mal network behavior using an auto-associative kernel regression (AAKR) model.

Finally, a sequential probability ratio test (SPRT) is applied to the residuals in the

model to determine if the residuals are generated from normal behavior or an anoma-

lous distribution. If the new traffic data fails to fit within the profiles, an alert is

generated [GUZ11, YUH06, ZS10].

2.3.2 ScriptGenE Framework.

The ScriptGenE framework was originally designed for automatically configuring

PLC emulation. The ScriptGenE framework consists of two Python scripts: Script-

GenE.py and ScriptGenEreplay.py; the former generates and manipulates protocol

trees (p-trees) and the latter replays the p-trees as an emulator. ScriptGenE is based

on ScriptGen (an automated script generation tool for honeyd) and protocol infor-

matics (PI), which allows for protocol stream analysis by using bioinformatics al-

gorithms [LMD05, War15]. PI is used in the ScriptGenE framework and provided

alignment functions, such as Smith-Waterman, Needleman-Wunsch and tree creation

via unweighted pair group method with arithmetic mean (UPGMA) clustering.

ScriptGen extends PI by using Region Analysis. Regions are bytes with the same

type, similar mutation rates, the same “kind” of data, and the same gap presence,

which are all calculated and displayed when bytes in messages are aligned [LMD05].

Regions are used to determine whether intra-protocol dependencies, or links, between

client and server messages exist within a session [LDM06, War15].

The ScriptGenE framework begins with the ScriptGenE script. Packet capture

(Pcap) files are input to ScriptGenE.py with build parameters specified. After a series

of consolidations and clustering operations, SciptGenE.py generates an initial p-tree

that represents valid TCP connections based on observed traffic. Next, ScriptGenE.py
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identifies intra-protocol dependencies and the resulting p-trees are exported to be used

in the replay script for emulation [War15].

The replay script, ScriptGenEreplay.py, uses a set of build options to define the

server to be emulated. ScriptGenEreplay.py loads a p-tree, and the user specifies the

server IP and port. To test the replay functionality, test client makes a connection

with the server. The server replays the loaded p-tree based on messages that are

sent from the test client. Specifically, the TCP connection that is established with

the server provides data in a stream of bytes from the client, and every “chunk”

of data received is checked for a match in the serving p-tree [War15]. If a match

is discovered, the corresponding stored server message is retrieved and sent back to

the client if it is data. If no match is found in the p-tree, or the corresponding

server response contains no data, then an unknown transition is handled. The replay

script offers a novel algorithm known as backtracking, that allows the emulator to

backtrack to a different state with a matching transition to send valid data back to

the client [War15]. The goal of the backtracking algorithm is to find the earliest edge

in the p-tree that matches the client request and then return the corresponding server

response and data. The backtracking algorithm enables session looping, and provides

flexible emulation [War15].

Implementing the ScriptGenE framework as an ADS requires a combination of

approaches to test and evaluate the scripts. As an ADS, ScriptGenE most resembles

pattern matching ADSs. Recall that pattern matching analyzes deviations from nor-

mal behavior by establishing patterns in normal data sets and identifying outliers as

anomalous [YUH06]. Additionally, ScriptGenE utilizes several clustering algorithms

to group TCP message sequences and build protocol trees [War15]. In anomaly de-

tection, clustering algorithms characterize messages, align bytes, and select features

to classify byte streams from messages, similar to the algorithms within ScriptGenE.
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Finally, to evaluate the effectiveness of the ADS, a machine learning testing technique

known as cross-fold validation is used to ensure that the entire data set is utilized.

2.4 Chapter Summary

ICS is an important part of daily life and is ingrained in modern societies. The

United States has 16 critical infrastructure sectors that are as susceptible to cyber

attack as any traditional corporate IT enterprise. This section provides background

on the ICS environment as well as threats, vulnerabilities and risk factors to the ICS.

This section also examines IDSs and specifically provides information on current re-

search on anomaly detection systems. Machine learning and pattern matching are

just two methods in the research community that are being investigated for detect-

ing anomalous behavior in the ICS environment. An overview of the ScriptGenE

framework is provided to provide background on the framework as a set up to its

application as an anomaly detection system.
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III. Framework Design

3.1 Overview

This research focuses on the feasibility of implementing an ADS within an ICS

environment based on the ScriptGenE framework. The goal in testing and imple-

mentation are both in line with current research methods in anomaly detection and

is described in the following sections.

3.2 Approach

Python-based ScriptGenE is implemented as an ADS. Much of its original func-

tionality is preserved to prove its versatility as an ADS. The ADS is implemented

in a simulated ICS environment designed to specifically monitor traffic between an

EWS/HMI and PLC. The link between the EWS and a PLC is chosen because of

the potential for a successful man-in-the-middle attack to occur between the two

devices and manipulation of either the controller, HMI, or EWS [SFS11]. If an ad-

versary can take control of the controller or field device, the adversary could send

modified network traffic to cause “undesirable events” to occur unbeknownst to the

human operator [SFS11]. The rest of this section describes the components of the

intrusion detection process and its applicability to this research. Additionally, a brief

description of the experimental approach is introduced.

3.2.1 Intrusion Detection Process Components.

This section elaborates on the components of a standard intrusion detection pro-

cess as the method with which the ScriptGenE framework is tested and evaluated. A

standard intrusion detection process is listed below [JY13]:
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• Information Sources – Where does the information or data originate?

• Data Acquisition Tools – What tools are needed to acquire the necessary data?

• Data Pre-processing – What component of the ScriptGenE framework will be

used to pre-process the data?

• Intrusion Detection – What component of the ScriptGenE framework will be

used for intrusion detection?

• Data Analysis – How will the intrusion detection method be evaluated? What

are the performance metrics?

• Threat Analysis and Response – How will threats be addressed?

The components of the intrusion detection process are collectively used an an

approach for evaluating the viability of the ScriptGenE framework as an ADS. For

this research, each component must be addressed in order to proceed utilizing the

ScriptGenE framework as an ADS. Figure 4 depicts the proposed process flow for

implementing the ScriptGenE framework ADS and serves as a reference visual in

addressing the standard IDS process components listed above. The following sections

address each component of the intrusion detection process.

3.2.1.1 Information Sources.

For this research, information or data originates from an EWS and a PLC. In-

formation or data is defined as the network traffic that is generated between the

EWS and the PLC and is the workload for the system under test (SUT) described

in more detail in Section 3.3. Network traffic between the EWS and PLC is nar-

rowly generated to model normal behavior found in a real ICS system. The recorded
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Figure 4. Proposed ScriptGenE ADS Process

network traffic is saved as a Pcap file. Referring to Figure 4, this is portrayed as

“EWS ↔ PLC network traffic” in the ScriptGenE ADS process.

3.2.1.2 Data Acquisition Tools.

Data acquisition tools are used to capture events from network-based information

sources [JY13]. An experimental script was developed for this research to initiate the

packet capture between an EWS and PLC. The network analyzer tcpdump is used

in the experimental script to collect network traffic generated between the EWS and

PLC via a spanning port switch. Section 3.7 provides a detailed description of the

hardware used to collect the data.

3.2.1.3 Data Pre-processing.

Data pre-processing refers to data cleaning/transformation techniques used to

support analysis of the IDS [JY13]. Referring to Figure 4, the data pre-processing

component is depicted by the ScriptGenE.py block within the ADS. The Script-

GenE.py script is used for data pre-processing as it transforms a packet capture of

the generated network traffic between the EWS and PLC to a p-tree to be used for
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intrusion detection. A Pcap of the captured network traffic is input to ScriptGenE.py.

3.2.1.4 Intrusion Detection.

For this research, the intrusion detection component of the ADS consists of using

a clientReplay.py script and the ScriptGenEreplay.py script, as shown in Figure 4.

‘New’ p-tree refers to new network traffic introduced to the system to be verified

by the ‘Baseline’ p-tree loaded into the ScriptGenEreplay.py script. The ‘Baseline’

p-tree represents normal, acceptable network behavior between the EWS and PLC.

An anomalous event is defined as one to many instances where there is no match

found between the ‘new’ p-tree and the ‘Baseline’ p-tree. Output logs generated by

the ScriptGenEreplay.py script are to represent network logs that would be reported

to a human operator at the EWS.

3.2.1.5 Data Analysis.

Data analysis for this research is the performance evaluation of the ADS, which

includes performance metrics of the SUT, depicted in Figure 5. Performance metrics

are described in further detail in Section 3.6. In addition to performance metrics,

data analysis also occurs with Wireshark. Wireshark is a network packet analyzer

and is used to inspect anomalous network packets that are reported by the ADS.

3.2.1.6 Threat Analysis and Response.

Threat analysis and response refers to the human element of the system in which

a human operator inspects the anomalous events reported by the output logs and

makes decisions in response to the activity. The response is based on the security

policy of a specific ICS environment [SFS11].
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3.2.2 Experiments.

Three experiments are developed and performed for this research. A brief descrip-

tion of each experiment is provided here. Chapter IV goes into more detail on the

implementation of each experiment.

Experimental Validation. An experimental validation is used to test the

effectiveness of the approach and methodology described in this chapter. This exper-

iment also establishes a baseline p-tree that is used in Experiment 1 and is referred

to as ‘Baseline’ p-tree throughout the rest of this document. The ‘Baseline’ p-tree

is used as the model of normal network behavior between an EWS and PLC and

contains no anomalous or malicious data.

Experiment 1. Experiment 1 assesses the effectiveness of the ADS in being

able to distinguish anomalous activity from normal activity. Two independent test

traces (labeled Normal and Malicious) are introduced to the system separately and

are compared with the ‘Baseline’ p-tree for matches. Anomalous behavior is reported

if there is no match in the ‘Baseline’ p-tree.

Experiment 2. Experiment 2 assesses the ADS’s ability to identify anoma-

lous activity even if anomalies are learned with normal network traffic. This experi-

ment addresses the problematic scenario in which a threat actor slowly trains an ADS

to accept anomalies as normal behavior to gain access to an ICS network.
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3.3 System Boundaries

Figure 5 is a depiction of the SUT: the ScriptGenE framework implemented as

an ADS. The components under test (CUT) consist of two Python-based scripts,

ScriptGenE.py and ScriptGenEreplay.py. The workload consists of network traces

and are applied to the system; the traces consist of both attack-free and malicious

network data, which is designed to simulate anomalous traffic. The network traces

were generated between the EWS and PLC performing two different tasks. With

the input network traces, ScriptGenE.py builds a p-tree based on build options. The

output p-tree is then imported to ScriptGenEreplay.py replay script, and then used

to detect anomalies in the incoming ‘new’ network traffic. The ADS is simulated as

being placed between the EWS and PLC. Performance metrics used to evaluate the

SUT are TPR, FPR, TNR, and false negative rate (FNR). More detail about each

section in the SUT are given as this chapter progresses.
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Figure 5. System Under Test: Anomaly Detection System

3.4 Workload

The first part of the intrusion detection process is identifying the information

source. For this research, the information source is the workload for the SUT men-

tioned in Section 3.2. Simulated ICS network traffic is generated between a PLC and

EWS. The workload for the ADS consists of network traffic generated by performing

normal application tasks expected between a PLC and EWS, specifically, the tasks are

‘uploading’ a ladder logic program to the PLC and establishing communication with

the PLC from the EWS, respectively. Application tasks are discussed with system

parameters in Section 3.5.

The network traffic/traces for this research are characterized into three types:

1. Normal – consists of attack-free network traffic

2. Malicious – consists of simulated malicious, anomalous network traffic

3. Combined – consists of merged Normal and Malicious network traffic
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Normal network traffic represents normal network behavior between the EWS

and PLC and contains no anomalous or malicious packets. An experimental script

developed for this research is configured to collect 10 reference Pcaps based on network

traffic generated from performing the two tasks previously mentioned. Of the 10

reference Pcaps, five traces are chosen randomly to create one experimental Pcap

which is used as the input trace to the ADS. Based on previous research, five traces

are determined to be adequate in accurately emulating a PLC communicating over

EtherNet/IP because five traces provides byte variability in TCP header fields that

are supposed to change (i.e., sender context field) [War15]. Furthermore, five input

traces overcomes sampling issues and achieves variability allowing the backtracking

algorithm to handle more transitions during replay [War15]. An accurate model

of normal network behavior provides a good baseline p-tree with which the other

types of network traces in the workload can be compared for intrusions or anomalies.

The experimental Pcap representing Normal network traffic is used for Experimental

Validation and Experiment 1.

Malicious network traffic is created to represent anomalous, malicious packets sent

to the PLC. The Malicious network Pcap is modeled after a denial of service (DoS)

SYN flood and created by a third party, open source TCP/IP packet generator called

HPING2 [San09]. One Pcap consisting of 400 extraneous SYN packets represents the

SYN flood DoS attack generated for use as an input to the ADS for Experiment 1.

The Combined network traffic consists of merged Normal and Malicious traces.

Ten reference Pcaps are generated containing Normal network traffic, from which

five traces are randomly selected to form one experimental Pcap. The Malicious

Pcap described previouly is merged with the experimental Pcap using Wireshark’s

‘merge’ function to create the Combined network trace used as input to the ADS for

Experiment 2.
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3.5 System Parameters

As shown in Figure 5, the system parameters consist of EWS/PLC configuration,

build options, replay options and tasks. This section provides details on the system

parameters of the ScriptGenE framework ADS.

3.5.1 PLC Configuration.

The PLC configuration for this research is outlined below.

Allen-Bradley ControlLogix5561 (L61) PLC

• Firmware Version 19.015

• Slot 0 – EtherNet/IP ENBT

• Slot 1 – L61 Controller

• Slot 6 – DC Output Module

3.5.2 EWS Configuration.

A description of the EWS software configuration for the PLC is outlined below.

Rockwell Automation RSLogix5000 Software Suite

• Version 19.01.00 (CPR 9 SR 3)

• Ladder Logic Sample Program: LightingDemo.ACD

• RSLinx Classic Lite, Version 2.59.02 CPR 9 SR 5

3.5.3 Tasks.

Two tasks are chosen to simulate normal network traffic behavior between a PLC

and EWS. The first task establishes communication between the PLC and EWS.
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RSLinx is used to establish this connection using EtherNet/IP since the PLC and

EWS are connected via Ethernet to a switch. RSLinx is a Windows-based software

package that enables communication between all Rockwell Industrial Control hard-

ware and an HMI and EWS [Roc14]. RSLinx uses the application RSWho to browse

the network for a PLC and populates the RSLinx graphical user interface (GUI) with

available modules. The second task is ‘uploading’ a program to the PLC. The pro-

gram is a simple ladder logic program executed on the PLC to perform a lighting

demo by providing power to lights in a pattern via the DC output module.

3.5.4 ScriptGenE.py Build Options.

The ScriptGen.py build options for the experiment are:

./ScriptGenE.py $IP -p 44818 -M 0.2

where, M, is the macroclustering threshold, -p is the target port, which is port 44818.

In the ScriptGenE framework, 0.5 is the default value for the macroclustering thresh-

old, which defines the minimum distance between two sequences and it controls how

clusters are created. The threshold can be set between 0.1 and 1.0 in the command

line or in a configuration file when ScriptGenE.py is run. If M is set to a small value,

many small clusters are created. If M is set to a big value, then fewer, larger clusters

are created. Based on findings conducted during pilot testing, a threshold of 0.2 is

chosen it allows the ScriptGenE script to create small enough clusters that are refined

enough for microclustering to be effective.
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3.5.5 ScriptGenEreplay.py Replay Options.

The ScriptGenEreplay.py replay options are:

./ScriptGenEreplay.py <p-tree> -I $IFACE -f -r always

where -f allows the server to run forever or until a keyboard interrupt shuts the

server down. The “-r always” option enables the backtracking feature. A p-tree is

loaded to the ScriptGenEreplay.py script and used for comparison with other p-trees.

Backtracking is a novel algorithm within the ScriptGenEreplay.py script. Its purpose

is to allow for more flexibility in the emulation of ICS devices. Backtracking is em-

ployed whenever an unknown transition must be handled by locating within p-tree

the earliest edge that matches the current client request and return the correspond-

ing next state (i.e., the server response) [War15]. Backtracking is necessary for the

ScriptGenE framework to be utilized as an ADS.
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3.6 Performance Metrics

Accuracy is used to measure the performance of the ADS. As shown in Figure 4,

p-trees (labeled ‘Baseline’ and ‘new’) are compared using the ScriptGenEreplay.py

script to determine if they are different from each other. The expected outcome is

one of the following:

1. The compared p-trees are determined to be different, indicating an anomaly is

detected,

2. The compared p-trees are determined to be similar, indicating no anomaly is

detected.

The described outcomes are defined with the following metrics:

• true positive (TP) –anomaly exists and detected

• false positive (FP) – anomaly does not exist but an anomaly is reported

• true negative (TN) – anomaly does not exist and not detected

• false negative (FN) – anomaly exists but an anomaly is not reported

The true positive rate (TPR) and false positive rate (FPR) are common mea-

sures of accuracy for diagnostic systems and are used to determine the effectiveness

of the ADS in classifying anomalies [Dun13, Swe88]. The TPR is defined as the num-

ber of correctly identified anomalies (TP) divided by the total number of anomalies

(TP+FN).

TPR =
TP

(TP + FN)
(1)
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The FPR is the number of incorrectly identified anomalies (FP) divided by the

total number of instances with no anomaly (FP+TN). The equation is as follows:

FPR =
FP

(FP + TN)
(2)

The true negative rate (TNR) can be derived from the FPR as follows:

TNR = 1− FPR (3)

The false negative Rate (FNR) can be derived from the TPR as follows:

FNR = 1− TPR (4)

For this research, the ADS is considered effective (and ScriptGenE is considered

viable as an ADS) if the TPR is greater than or equal to 0.9 and the FPR is less than

0.1.

Mutation Rates. Mutating regions are discovered by the Region Analysis

algorithm in the ScriptGenE framework and expressed by the value, mutation rate

(MR), in the following equation [War15]:

MR =
# unique bytes

total bytes
(5)

Mutation rates are calculated in this research to determine if there are differences

between p-trees, namely the p-tree generated representing normal network behavior

and the p-tree introduced to the ADS representing ‘new’ network traffic. The MR

for each p-tree is calculated and provided as an output from the Region Analysis

operation. The difference between the two MRs is taken to determine if the p-trees
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are different or the similar. One of the following outcomes is expected:

• If the MRBaseline - MRnew is greater than 0.1 (10%), then p-trees are identified

as different (+)

• If the MRBaseline - MRnew is less than or equal to 0.1 (10%), then p-trees are

identified as similar (-)

A (-) is used to designate similar p-trees (the null hypothesis), and the (+) is used

to designate differing p-trees (the alternate hypotheis) for this research.

3.7 Environment

The experimental set up, shown in Figure 6, includes three physical machines:

one L61 PLC, one HP laptop with a Linux OS, and one HP laptop with a Windows

OS; all were connected via Ethernet to a spanning port switch. The Windows 7

laptop hosts a Windows XP virtual machine (VM), which includes RSLogix 5000

suite. The VM simulates the EWS in this research. The Linux laptop is used to sniff

and capture all network traffic between the PLC and EWS via the NetGear ProSafe

GS108E spanning port switch. The Linux laptop contains the ScriptGenE framework,

therefore the laptop simulates the ADS on the network. The Linux laptop is also used

to run the experiments and collect data.
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Figure 6. Environmental Setup

Machine Configurations. The specific laptop configurations are:

Laptop 1: Hewlett-Packard Elitebook 8570w

• Microsoft Windows 7 Service Pack 1

• 2.6GHz Intel Core i7-3720QM processor (4 cores)

• 16GB RAM

• VMware Workstation version 11.0.0 build-2305329

Windows XP SP3, Version 2002

2 processor cores, 3 GB RAM, 60 GB HD
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Laptop 2: Hewlett-Packard Elitebook 8570w

• Ubuntu 14.04 LTS, kernel 3.13.0

• 2.6GHz Intel Core i7-3720QM processor (4 cores)

• 16GB RAM

• tcpdump version 4.5.1, libpcap version 1.5.3

3.8 Evaluation Technique

The evaluation technique measures the classification accuracy of the ScriptGenE

framework as an ADS. The ScriptGenE framework is treated as a learning algo-

rithm, and a 10-fold cross validation method is selected to ensure accuracy in the

ADS’s performance. This research uses TPR, FPR, TNR, and FNR as the means of

evaluating the performance of the ADS. For this research, a TPR of 0.9 and a FPR

of 0.1 is considered acceptable to claim that the ScriptGenE framework is a viable

ADS. Because it was not originally designed as an ADS, meeting these performance

metrics would allow for further investigation and design consideration as an ADS.

3.8.1 10-fold Cross Validation.

In k -fold cross validation, a data set is split into k mutually exclusive subsets.

Cross validation takes advantage of using the entire data set for training and testing

of a machine learning algorithm [Koh95]. Bias and accuracy can be issues if the folds

do not contain the same percentage of attributes or features as the overall data set.

To mitigate this, folds are randomized and stratified because stratification of the folds

yields a less biased estimate of accuracy [Koh95].

Once the folds are generated, k rounds of learning are performed. k -1 folds are

used for training (or learning) in each round. The kth fold, the remaining fold which
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is unlabeled for that round, is used as the testing data set [Koh95, Wer14]. The true

estimate of accuracy is determined by taking the final averaged accuracy from the k

rounds [Koh95].

Ten-fold cross validation is chosen to measure the accuracy of the ScriptGenE

as an ADS. [Koh95] determined that to achieve low variance and reasonably low

biased estimations, 10 folds are required. Therefore, selecting k = 10 can provide an

accurate estimate of the ability to classify anomalies in the ScriptGenE ADS.

3.8.2 Cross Validation Method Applied to ScriptGenE ADS.

In the 10-fold cross-validation technique, 10 rounds are performed in which each

round learns on nine folds and tests on the remaining tenth fold. Therefore, every

fold is eventually used for testing. Figure 7 depicts k rounds of the cross validation

technique [Koh95].

Figure 7. k-fold Cross Validation [Koh95]

An open-source tool, known as SplitCap, is used to split Pcap files into multiple

files based on user datagram protocol (UDP) or TCP sessions or host-pair [Spl].

SplitCap is used on the packet captures that were generated for this study. Each

Pcap file that is created by the SplitCap tool is considered a fold to either be used

for training or testing on the ADS.

The 10-fold cross validation method is used for experimental validation mentioned
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in Section 3.2. To characterize normal ‘Baseline’ behavior in the system, an analysis

of each testing fold is performed after every round. The following procedure outlines

the experimental validation for this research.

For each round,

1. One Pcap containing Normal network behavior is split into 10 folds by SplitCap.

2. Nine folds are used to train the ADS. ‘Trained p-tree’ is produced and its

mutation rate is calculated.

3. The tenth fold is used to test the ADS. ‘Test p-tree’ is produced and its mutation

rate is calculated.

4. ‘Test p-tree’ and ‘Trained p-tree’ are compared using ScriptGenEreplay.py script.

Matches/no matches are reported in output log.

5. Calculate difference between ‘Trained p-tree’ MR and ‘Test p-tree’ MR.

The entire procedure is performed 10 times to ensure all folds are used for testing.

The goal of the experimental validation is to ensure that a Pcap representative of

attack-free, anomaly-free Normal network traffic is used as a ‘Baseline’ p-tree.

3.9 Experimental Design

This study uses a one-factor factorial design. The factor under study is the network

traffic generated and captured between the EWS and PLC. There are three levels:

Normal, Malicious, Combined, also mentioned in Section 3.4. Two experiments are

used to determine the effectiveness of the ADS in addition to an experimental vali-

dation. The experiments are labeled ‘Experimental Validation,’ ‘Experiment 1,’ and

‘Experiment 2.’ Brief descriptions of each are provided in Section 3.2. The 10-fold

cross validation method is used for the Experimental Validation as well as Experiment
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2. Although 10-fold cross validation is used for both experiments, five repetitions of

each experiment are run to ensure an accurate estimate of the ADS’s performance.

For Experiment 1, 10 repetitions are run (five repetitions with the Normal trace and

five repetitions with the Malicious trace) to ensure the ADS is able to correctly dis-

tinguish between normal and anomalous network behavior. The rest of this section

describes implementation details related to the experiments conducted.

3.9.1 Generating experimental network traces.

An experimental script is developed for this research to automate network traf-

fic between the EWS and PLC. The experimental script was originally developed

by [War15]. The script is modified to generate network traffic between the EWS and

PLC while performing two tasks, but does not include taking measurements as was

done in the original experimental script. An overview of the experimental script fol-

lows. Ten reference traces are created by generating traffic between the PLC and the

EWS. The network traffic is captured by using tcpdump. The tcpdump command

used is as follows:

tcpdump -i $IFACE -s 65535 -w <file>

where -i designates which network interface to listen on, -s specifies the snapshot

length to be the full 65535 bytes and -w instructs the tool to write the raw packets

to a file. As shown in Figure 6, the Ubuntu laptop is positioned between the PLC

and EWS (represented by the Windows VM laptop). The switch is configured via

a management console to mirror traffic between the PLC and EWS onto a third

port where the Ubuntu machine is connected. This configuration allows the Ubuntu

machine to use tcpdump to capture packets between the PLC and EWS via the

Ethernet (eth0) interface.

In order to simulate Normal behavior between the PLC and EWS, two tasks are
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performed:

• Establish communication between the PLC and EWS using RSLinx

• Uploading a simple ladder logic program from the EWS to the PLC

These tasks are executed using GUI automation software known as SikuliX, which

is also used in [War15]. SikuliX allows anything that can be seen on the screen of a

computer to be emulated and automated, including keyboard and mouse events [Hoc15].

This research adapts the SikuliX scripts from [War15] to automate the tasks men-

tioned above. An example of how the RSLinx task is developed in the SikuliX IDE is

shown in Figure 8. The figure shows the commands used to open the RSLinx window

to begin establishing communication with the PLC from the EWS.

Figure 8. RSLinx SikuliX script snippet

These tasks are chosen because they are representative of common tasks between

a PLC and EWS that normally need to be accomplished when a new PLC comes

online in an ICS network [Roc00]. Based on pilot studies performed previously, it

takes 5 seconds to successfully upload the ladder logic program to the PLC. After
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the ladder logic program is uploaded to the PLC, the experimental script is then

instructed to run for five seconds to collect network traffic of the PLC performing

the lighting demo ladder logic task. This capture ensures that not only is the TCP

communication represented in the network trace, but the activity between the PLC

and EWS is recorded to provide an accurate model of behavior between the PLC and

EWS. After each reference trace is collected, the experimental script resets the PLC

and EWS to begin another capture. From the 10 reference traces, five are randomly

chosen to create one experimental Pcap file. As indicated in previous research, five

traces are recommended to overcome sampling issues and achieve byte variability to

allow the backtracking algorithm to handle more transitions during replay [War15].

3.9.2 Splitting the Pcap.

SplitCap is used to split the experimental capture into 10 subsets, or folds. Split-

Cap divides each trace based on TCP sessions, therefore each fold is expected to

contain at least one TCP connection [Spl]. Each fold is stored as a separate Pcap file.

Recall that in 10-fold cross validation, nine folds are used for training and the tenth

fold is used for testing. When performing the Experimental Validation, one experi-

mental Pcap is split into 10 folds with the SplitCap tool. Therefore, for each round,

nine Pcap files are merged together by using the ‘merge’ function in Wireshark.

The command to split the Pcap is:

SplitCap -r <pcap_input_file> -o <output_directory>}

The intent behind splitting the trace Pcap into 10 folds is to take advantage

of utilizing the entire trace in training and evaluating the ScriptGenE framework.

Since there are 10 folds, 10 rounds of testing are executed to ensure each fold is

utilized (refer to Section 3.8). In each round, nine folds are used for training, meaning

ScriptGenE.py creates on p-tree that is designated as the network ‘Baseline’ for that
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round. The 10th fold is used for testing, and the resultant p-tree is compared against

the ‘Baseline.’

3.9.3 P-tree comparison and anomaly detection.

Once the ‘Baseline’ p-tree is generated from ScriptGenE.py, it is loaded to the

ScriptGenEreplay.py script and established as a server. The ‘test’ p-tree is loaded

to a client.py script and specifies the IP address and port number of the server to

connect to the server..

The build options for ScriptGenEreplay.py in which the ‘baseline’ p-tree is used

for comparison is:

./ScriptGenEreplay.py <tree_file> <port> -i \$IFNAME -f -r always}

where -i is the interface, -f is to run the server forever, and -r always is to

enable backtracking.

The build options for the client.py script in which the ‘test’ p-tree is loaded:

./client.py <tree_file> <server_ip> <server_port>}

Once both p-trees are loaded, the client selects an edge from the ‘test’ p-tree and

sends it to the server to locate a corresponding node in the ‘Baseline’ p-tree. One of

the novel features of the ScriptGenE framework is the ability the replay script has

to backtrack through a p-tree. Backtracking on the ‘Baseline’ p-tree is permitted

via the -r build option. If a requesting client edge is not found immediately in the

‘Baseline’ p-tree, the backtracking algorithm searches for the nearest matching edge.

If found, the corresponding server message node is sent to the client and another edge

is selected from the ‘test’ p-tree. If the node does not exist, i.e., there is no match in

the ‘Baseline’ p-tree, it is assumed that an anomaly exists. In the event anomalous

activity is identified, an alert is generated via the ScriptGenEreplay.py output log,

which is to be viewed on the EWS for a human operator for action. Figure 9 shows
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an example of the alert output that is generated if an anomaly is detected.

Figure 9. Alert Output Example

3.10 Design Summary

The goal of this research is to determine the feasibility of the ScriptGenE frame-

work as an ADS in an ICS environment. ScriptGenE is treated as an ADS imple-

mented between a simulated EWS and real PLC. For the ADS to be deemed viable, a

TPR of 0.9 and FPR of 0.1 are selected as acceptable thresholds and can be tailored

to meet specific and individual system requirements at a later time if these thresholds

are first met in this proof-of-concept study. This chapter describes the experimental

methodology and equipment used to test the accuracy of the ScriptGenE framework

as an ADS. To evaluate the testing method, 10-fold cross-validation is selected to

ensure an accurate estimate of the performance of the ADS.
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IV. Results and Analysis

This chapter provides details of the implementation and results of the ScriptGenE

framework ADS. Three experiments are evaluated in this chapter and analysis of each

of the data sets are provided as well as an assessment of the TPR/FPR in the form

of a receiving operating characteristic (ROC) curve of each experiment.

4.1 Experimental Validation

4.1.1 Hypothesis.

This experiment focuses on establishing a baseline model of normal network be-

havior between a PLC and EWS using 10-fold cross validation. Since the experimental

Pcap under question is free of attacks, it is expected that no anomalies are reported

in the output log from each of the 10 testing folds. Additionally, it is also expected

that the overall FPR = 0 and the TNR is = 1. Recall that TNR is a performance

metric defined as an anomaly does not exist and is not detected by the IDS.

4.1.2 Analysis.

Ten rounds of the cross validation method are performed to complete one ex-

periment. Five total experiments are performed for the Experimental Validation to

ensure an accurate estimate of the ADS’s performance as well as establish a baseline

model of normal network behavior between a PLC and EWS. Each round consists of

nine training folds and one test fold. The training folds produce one p-tree (referred

hereafter to as the ‘Trained p-tree’) and the test fold produces one p-tree (referred

to as the ‘Test p-tree’). Recall from Section 3.6 that mutation rates are calculated

from both p-trees and the difference is taken to determine if the p-trees are different

or similar.
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As expected, no alert was produced in the output logs from any of the rounds and

experiments. Mutation rates reported in the Region Analysis outputs also confirms

that the p-trees produced in each round are similar, i.e., the difference between the

mutation rates of the ‘Trained p-tree’ and ‘Test p-tree’ is less than 0.1. Since no

anomalies are reported and confirmed by similar p-trees in each round, the FPR = 0

and the TNR = 1. The Experimental Validation provides the ‘Baseline’ p-tree to be

used in Experiment 1 for comparison and represents normal network behavior between

a PLC and EWS. Figure 10 shows the resultant ‘Baseline’ p-tree and a magnified

snippet of the ROOT node. Labels within the symbolic nodes simply represent the

corresponding server message from the Pcap file that is used to build the p-tree.
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Figure 10. Final Baseline p-tree snippet
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4.2 Experiment 1: Attack-free Network Traffic

4.2.1 Hypothesis.

This experiment uses attack-free network traffic generated between a PLC and

EWS (Normal), the Malicious network trace, and the ‘Baseline’ p-tree created from

the Experimental Validation. The Normal network trace is provided as input to the

ADS and the resultant p-tree is used to compare against the ’Baseline’ p-tree. Next,

the Malicious network trace is provided as input to the ADS and the resultant p-

tree is compared against the ‘Baseline’ p-tree in the same manner. This procedure is

repeated 5 times each (total of 10 experiment runs) to ensure an accurate measure of

the performance of the ADS.

A common issue with ADSs, in comparison to signature-based IDSs, is the report-

ing of higher false positive rates. Anomalies are logged via the ScriptGenEreplay.py

replay script, should any be reported. This logging mechanism simulates information

that would be useful to an operator or engineer for further investigation.

It is hypothesized that since no anomalous behavior is expected in these traces,

no false positives should be reported with the Normal network trace. However, the

Malicious network trace should produce alerts in the output log and the difference

between the mutation rates of the ‘Baseline’ and Malicious p-trees should be greater

than 0.1. An FPR of 0 is expected with the Normal test run, and a TPR of 1 is

expected with the Malicious test. To be clear, it must be noted that a FPR of 0 is

sought after for this experiment to determine if the ScriptGenEreplay.py script would

recognize similar p-trees as different. This result would indicate that the ScriptGenE

framework is not a viable solution as an ADS.
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4.2.2 Analysis.

A ROC curve is a function of the TPR and FPR. An effective ADS deployed in

an ICS environment cannot afford tolerate even one FP, especially in critical infras-

tructure, because it can be costly for an operator or engineer to stop operations to

inspect the system looking for malicious activity that does not exist, but is reported.

In a ROC curve, the horizontal axis denotes the FPR and the vertical denotes the

TPR of a classifier under investigation. The area under the curve (AUC) measures

the effectiveness of the ADS; an area close to 1, indicates that the ADS is effective in

classifying between normal and anomalous behavior [Swe88]. A ROC curve closer to

the reference straight line in the graph indicates the ADS is ineffective at classifying

between normal and anomalous network behavior.

After 10 experimental runs (five with Normal and five with Malicious network

traces), the TPR is 1 and the FPR is 0. The Malicious network traffic caused alerts

to be generated in the output logs, as expected. Figure 11 shows the corresponding

ROC curve for this experiment. Note that the AUC is 1. For this experiment, the ADS

perfectly discriminates between normal and anomalous network traffic as expected.

Closer observations of the Region Analysis outputs from ScriptGenE.py show that

each of the Normal p-trees did not differ from the ‘Baseline’ p-tree, meaning mutating

regions are similar. This is to be expected because the normal and the ‘Baseline’ p-

trees were generated with attack-free network traffic. The macroclustering and Region

Analysis algorithms align and analyze bytes that are semantically the same for both

the ‘Baseline’ p-tree and the Normal p-tree [LMD05, War15]. However, the Malicious

experiment runs did produce the opposite result from the Normal experiments, as

expected. Anomalous behavior is detected by the ADS in each run because the

Malicious p-trees do not match the ‘Baseline’ p-tree. As a result, alerts are generated

in the output logs for the operator to further analyze.
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Figure 11. ROC curve for Experiment 1

4.3 Experiment 2: Simulated SYN Flood Denial of Service Attack

4.3.1 Hypothesis.

This experiment focuses on the scenario in which a malicious actor remotely trains

the ADS to accept malicious behavior with the intent of launching an attack that

would go undetected because the ADS is trained to see the behavior as normal.

However, the goal of this experiment is to determine if the ADS can still detect

anomalies even if anomalies exist in the network traffic used for training. The 10-fold

cross validation method is used for this experiment. A Pcap containing Combined

network traffic is used to train and test the ADS and ten rounds are completed.

For this experiment, the attack in question is the SYN flood attack. This attack

is chosen because ScriptGenE builds p-trees from valid TCP connections parsed from

Pcaps. Valid TCP connections are defined in [War15] as observing a 3-way handshake

or observing a server sending data to a client, which is defined as a ‘missed hand-

shake session.’ ScriptGenE initially handles ‘missed handshake sessions’ by building
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a dummy client message with the data set to ‘MISSING.’ However, during the main

consolidation in the ScriptGenE.py script, the consolidated ‘missed handshake edges’

are deleted. To execute this experiment, a minor modification to the script had to be

made so branches consolidated under the ‘MISSING’ label would not be deleted as

they represent incomplete 3-way TCP handshakes. Pilot testing of this modification

revealed no negative effect on ScriptGenE.py functionality.

The SYN flood attack is crafted using an open-source Linux-based tool known as

hping2 [San09]. Hping2 is a free packet generator and analyzer for the TCP/IP

protocol. The command to execute the SYN flood with hping2 is:

./hping2 -i u1 -S -p 44818 -c 400

where -i is the interval to wait 1 microsecond between each packet, -S indicates using

the SYN flag, -p is the destination port 44818 for EtherNet/IP, and -c is the packet

count, which is set to 400 packets. Pilot studies of this attack on the PLC showed

that sending over 450 packets overwhelmed the PLC in the experimental environment,

rendering it ineffective in experimentation. The intent of this experiment is to produce

anomalous, malicious network events that simulate an attack, but could potentially

be identified by the ADS.

It is hypothesized that since anomalous behavior is present in the Combine trace,

true positives should be reported and the ‘Trained p-trees’ are different from the ‘Test

p-trees.’ The goal of this experiment is to use the ScriptGenE framework to identify

anomalous behavior even when it is learned and to achieve a FPR of 0.1 and TPR of

0.9.

4.3.2 Analysis.

Unlike the first experiment, the ROC curve is not a perfect curve with an AUC of

1. Using the R package, pROC, the AUC for the ROC curve in Figure 12 is 0.9002.
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TPR is 0.911, and the FPR is 0.054. As expected with the Combined network trace,

alerts are generated in the output logs. Comparison of the mutation rates for each

round in the experiment indicate that eight of the 10 rounds identified differing p-

trees and 2 of the 10 identified similar p-trees. Table 1 captures the results for the

mutation rates of the p-trees for each round. The column labeled ‘diffMR’ shows the

difference in the mutation rates between the ‘Trained p-tree’ and the ‘Test p-tree’ for

every round. Recall from Section 3.6, mutation rates that differ by more than 0.1 are

considered different reported as (+). Mutation rates that differ by less than or equal

to 0.1 are reported similar and receive a (-) as a result.

Table 1. Difference in Mutation Rates for ‘Trained’ and ‘Test’ p-trees for 10 rounds

Round diffMR +/-
1 0.322 +
2 0.334 +
3 0.351 +
4 0.289 +
5 0.363 +
6 0.104 -
7 0.351 +
8 0.344 +
9 0.332 +
10 0.100 -
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Figure 12. ROC curve for Experiment 2

The goal of this experiment is to accurately characterize anomalous network be-

havior from normal network behavior given that the ADS is training on Combined

network traffic. The lower TPR and higher FPR (in comparison to Experiment 1)

could be due to the incorporation of extra SYN packets to the ‘normal’ network traffic.

During the training phase, the ADS could be trained into believing those extraneous

SYN packets are ‘normal.’ A major drawback of ADSs, is that an attacker who is

patient, can incorporate malicious packets into an ICS network where an ADS can

be tricked into accepting those packets as normal network behavior. Over time, the

attacker could increase his immunity to the ADS and eventually obtain full access

into the system [YUH06, JY13].
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4.4 Summary

This chapter provides details about the implementation of the ADS. The ADS

in question is the ScriptGenE framework. The Experimental Validation shows that

the ‘Baseline’ network traffic capture contains no anomalies and is therefore the rep-

resentation of normal network behavior between the EWS and PLC. The resultant

‘Baseline’ p-tree is used for Experiment 1. The overall TNR for Experiment 1 is 1 and

the FPR is 0. The AUC for Experiment 1 is 1 and shows that the ADS can correctly

discriminate between normal and anomalous network behavior given the ‘Baseline’

model. For Experiment 2, the TPR is 0.9011 and the FPR is 0.054. The ROC curves

and these findings demonstrate the ability of the ScriptGenE framework to classify

anomalous network behavior from normal network behavior.
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V. Conclusions

This chapter summarizes the results of the research. Section 5.1 discusses the

conclusions based on the results in Chapter 4. Section 5.2 identifies contributions of

this research, and Section 5.3 discusses recommendations for future work.

5.1 Research Conclusions

This research presents a study on the feasibility of implementing an automati-

cally configurable PLC emulator as an anomaly detection system. The ScriptGenE

framework was originally developed to emulate PLCs in honeypots in ICS environ-

ments. The novel clustering, distance and search algorithms offered unique features

that made the ScriptGenE framework a viable option as an ADS. The backtracking

algorithm inherent in the ScriptGenE framework is also noted as a useful tool in

pattern matching.

The ScriptGenE framework is implemented as an ADS between an EWS and PLC.

In this position, the ADS monitors generated network traffic and develops a model of

normal behavior and stores it as a p-tree. Incoming network traffic, which may contain

malicious traffic, undergoes the same process and a p-tree is built to be compared

against the ‘Baseline’ p-tree. In theory, if the new tree is able to find matches in the

‘Baseline’ tree, then the network traffic is permitted to pass through the system and

on to the real network. The ability for the ADS to block and pass legitimate network

traffic after it has been verified; this is not implemented for this research. If the ADS

detects anomalies, i.e., no matches to the ‘Baseline’ p-tree, then an alert is logged for

the operator to investigate. Like any IDS, the ScriptGenE framework implemented

as an ADS still requires human operation to inspect and validate output logs when

alerts are generated for anomalies.
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The ADS presented in this research is able to detect anomalous network behavior

and maintain a low FPR when trained with attack-free network traffic.

For the Experimental Validation, a ‘Baseline’ p-tree is validated as the represen-

tation of normal network behavior and is used in Experiment 1. The 10-fold cross

validation method is used for the Experimental Validation as well as Experiment 2.

In Experiment 1, the ADS achieves a FPR of 0 and TNR of 1. Analyzing the ROC

curve, the AUC is 1, which shows that the ADS is a perfect classifier when no attack

data is available to learn or train on.

However, for Experiment 2, the ADS achieves a TPR of 0.9011, FPR of 0.054

and AUC is 0.9002. Introduction of malicious, anomalous packets decreased the

performance of the ADS due to the system building p-trees with anomalies in the form

of extra SYN packets incorporated into the folds. Indeed, this showcases a common

disadvantage of ADSs, however, it should not be unexpected that the ADS would view

anomalous data as normal if it trained on traffic with anomalies combined with normal

traffic. However, it seems counterintuitive that any anomaly would be reported at

all if the ADS is trained to accept the Combined network traffic as “normal.” The

results of the experiment show that the ADS is able to identify anomalies given that

it trained with Combined network traffic. Further inspection of this result reveals

that the “missed handshake sessions” is caused by the extra SYN packets. In other

words, as ScriptGenE.py parses through a Pcap and builds a p-tree, the extra SYN

packets are represented in the p-tree as an edge with a weight based on the number

of times the SYN messages are merged together. The node attached to the client

edge is labeled as ‘MISSING’ indicating that data from the server is missing and is

considered a dummy node, but part of the p-tree. As the ADS trains on the Combined

network traffic, it generates a ‘Trained p-tree’ which contains the ‘MISSING’ node

and client edge. It is observed the reason anomalies are reported in this experiment
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is due to the varying weights of the client edges with ‘MISSING’ nodes. For instance,

if the ‘Trained p-tree’ contained a ‘MISSING’ node with a client edge weight of five

(five SYN packets), and the ‘Test p-tree’ contained a ‘MISSING’ node with an edge

weight of 10 (representing 10 SYN packets), the ADS reported this discrepancy as an

alert in the output log.

Differences in mutation rates between the ‘Trained p-tree’ and ‘Test p-tree’ show

that the p-trees differ due to the uneven folds and distribution of SYN packets created

by the SplitCap tool. Therefore, based on this observation, Experiment 2 cannot be

used to definitively conclude the ADS can detect anomalies when Combined network

traffic is introduced.

5.2 Significance of Research

This research seeks to determine the feasibility of using a PLC emulator as an

anomaly detection system. The ScriptGenE framework contains features that make

it attractive for use as an ADS. The framework’s learning and replay abilities demon-

strate that it could be implemented in an ICS environment without any prior knowl-

edge of the system. Much research has been accomplished in applying machine learn-

ing to anomaly detection. Given the unique challenges presented by ICS and SCADA

systems, the possibility for an intrusion detection system to be implemented into

a system and function quickly is a research and operational goal by many security

professionals.

5.3 Future Work

This section provides three recommendations to further this research: enhance

algorithms, protocol expansion and honeypot incorporation.
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5.3.1 Enhancing current algorithms.

The current implementation of ScriptGenE does not handle inter-protocol depen-

dencies. Inter-protocol dependencies involve handling conversations that span across

different TCP sessions. Currently, the algorithm returns an error message that states

it cannot handle inter-protocol dependencies when it detects conversations across sev-

eral TCP connections [LDM06]. The addition of this feature would allow for more

realistic network traffic to be captured and used for protocol trees and emulating

normal network behavior.

5.3.2 Testing.

Testing of the ADS was conducted in a closed world with network traffic that

was generated between two devices in a controlled environment. The protocol under

study is EtherNet/IP, although it is recommended that more industrial protocols be

studied to test the limitations of the algorithm as an ADS. Performing the experiments

in a closed environment is not realistic when the ScriptGenE begins to improve in

capability. Future work to improve the ADS’s performance should include using more

malicious and anomalous traffic samples.

5.3.3 Hybrid network intrusion.

A more complete solution should be examined. That is, an examination of the

ADS alongside a honeypot would be more interesting and offer a more complete solu-

tion to the intrusion detection problem in ICS. Referring to Section 2.2.4, ScriptGenE

has the capability of fulfilling both the honeypot and the ADS. Implementation of a

version of a shadow honeypot with the ScriptGenE framework offers a unique solution

that could greatly improve ICS security.
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5.4 Summary

Clustering algorithms and machine learning have proven useful in an ADS. Other

methods, such as the novel ScriptGenE, can provide a low-cost solution for anomaly

detection in an ICS environment. This research investigates the feasibility of the

ScriptGenE framework, originally developed as a PLC emulator, as an ADS. So-

phisticated clustering algorithms and protocol tree generation make the ScriptGenE

framework an attractive solution to many security vulnerabilities in the ICS commu-

nity. This research shows that the ScriptGenE framework is a viable option as an

ADS as it correctly classifies anomalous network traffic from normal network traffic

when trained on attack-free network traffic.
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